Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xi-Jun Sheng and Hong-Wu He*

Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, People's Republic of China.

Correspondence e-mail: he1208@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study T = 292 K Mean σ (C–C) = 0.003 Å R factor = 0.047 wR factor = 0.119 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-[(2-Chloro-5-methylphenoxy)acetoxymethyl]-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane 1-oxide

In the structure of the title compound, $C_{14}H_{16}ClO_7P$, the P atom is in a distorted tetrahedral configuration. The data reveal that some strain is probably present in the bicyclic structure. The terminal O=P bond distance is 1.4426 (16) Å, and the bridging P-O distances average 1.5728 (14) Å. The average value of the O=P-O angles is 114.36 (2)°, while the average value of the O-P-O angles is 104.18 (4)°.

Comment

Heterocyclic compounds containing a symmetric caged bicyclic phosphate have received much attention since they were first synthesized (Verkade & Reynolds, 1960). Some of these molecules exhibit good biological activity, being particularly useful as herbicides (Ratz, 1966) and as flame retardants (Li *et al.*, 2002). The title compound, (I) (Fig. 1), has been prepared as part of our work on the synthesis of 2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-methanol 1-oxide and its alkoxylated derivatives and chloroacetate esters.

Selected bond lengths and angles are listed in Table 1. The O=P bond length is shorter than the P–O bond lengths within the bicyclic cage, as observed previously in a similar compound (Nimrod *et al.*, 1968). The external O=P–O angles are larger than the internal O–P–O angles, indicating a distorted tetrahedral configuration for the P atom. Atom C4, at the opposite end of the cage, exhibits a fairly normal tetrahedral geometry with the C–C–C angles ranging from 107.48 (16) to 111.51 (15)°. The bicyclic cage consists of three four-atom planes separated by dihedral angles of approximately 120°, as was noted earlier for a similar compound (Miu *et al.*, 1991).

Experimental

2,6,7-Trioxa-1-phosphabicyclo[2.2.2]octane-4-methanol 1-oxide, (II), was prepared as described in the literature (Vyverberg & Chapman, 2002) in 95% yield. (2-Chloro-5-methylphenoxy)acetyl chloride, (III), was synthesized according to a literature method (Coutrot, 1986) in about theoretical yield. To a stirred solution of (II) (0.005 mol) and triethylamine (0.006 mol) in acetonitrile (25 ml), a solution of (III) (0.005 mol) in acetonitrile (5 ml) was added dropwise at 273–283 K. The mixture was then stirred at room temperature for

© 2006 International Union of Crystallography All rights reserved about 3 h. The solvent was then removed under reduced pressure and the residue was washed with water (20 ml). The raw product was recrystallized from acetonitrile, giving colorless block-shaped crystals of the title compound after 3 d.

Z = 4

 $D_{\rm x} = 1.547 {\rm Mg m}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.38 \text{ mm}^{-1}$

T = 292 (2) K

 $R_{\rm int} = 0.071$

 $\theta_{\rm max} = 27.5^{\circ}$

Block, colorless

 $0.20 \times 0.20 \times 0.10 \text{ mm}$

3530 independent reflections

2528 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0648P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Crystal data

 $\begin{array}{l} C_{14}H_{16}ClO_7P\\ M_r = 362.69\\ Monoclinic, P2_1/n\\ a = 12.4504 \ (12) \ \text{\AA}\\ b = 6.3281 \ (6) \ \text{\AA}\\ c = 20.201 \ (2) \ \text{\AA}\\ \beta = 101.926 \ (2)^{\circ}\\ V = 1557.2 \ (3) \ \text{\AA}^3 \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: none 9387 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.119$ S = 0.963530 reflections 209 parameters

```
Table 1
```

Selected geometric parameters (Å, °).

P1-01	1.4426 (16)	P1-O4	1.5724 (14)
P1-O3	1.5696 (14)	P1-O2	1.5766 (15)
O1 B1 O2	114.01 (0)	C5 C4 C3	110.04 (15)
01 - P1 - 03 01 - P1 - 04	114.01(9) 114.03(9)	$C_{5}=C_{4}=C_{5}$	110.94 (13)
O3-P1-O4	104.15 (7)	C3-C4-C2	109.37 (16)
O1-P1-O2	115.02 (9)	C5-C4-C1	108.72 (15)
O3-P1-O2	103.99 (8)	C3-C4-C1	107.48 (16)
O4-P1-O2	104.39 (8)	C2-C4-C1	108.70 (16)
C4-C1-O2-P1	1.4 (2)		

H atoms were refined using a riding model, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic, C-H = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH and C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsolids and the atom-labeling scheme.

structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the National Basic Research Program of China (grant No. 2003CB114400) and the National Natural Science Foundation of China (grant No. 20372023) for finacial support.

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2000). *SMART* (Version 5.059) and *SAINT* (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.
- Coutrot, P. (1986). Synthesis, pp. 661-664.
- Li, X., Ou, Y. X. & Zhang, Y. H. (2002). Chem. J. Chin. Univ. 23, 695-699.
- Miu, F. M., Liu, X. L., Li, Y. G., Wang, J. J., Liu, Y. S., Bao, J. C., Cao, J. H. & Zhou, W. (1991). Acta Chim. Sinica, 49, 870–875.
- Nimrod, D. M., Fitzwater, D. R. & Verkade, J. G. (1968). J. Am. Chem. Soc. 90, 2780–2784.
- Ratz, R. F. W. (1966). US Patent No. 3 287 448.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Verkade, J. G. & Reynolds, L. J. (1960). J. Org. Chem. 25, 663-667.
- Vyverberg, F. J. & Chapman, R. W. (2002). US Patent No. 6 455 722.